Involving the Agard Distortion Function

نویسندگان

  • Yu-Ming Chu
  • Miao-Kun Wang
  • Yue-Ping Jiang
  • Song-Liang Qiu
  • Martin D. Schechter
چکیده

and Applied Analysis 3 in K0,∞ . In particular, the inequality λ K ≥ K holds for all K ∈ 1,∞ with the best possible constant c a. 2 g K logηK t − log t / K − 1 is convex in 1,∞ for fixed t ∈ 0,∞ . 3 If t ≥ 1 and r √ t/ 1 t , then h K logηK t − log t / K − 1/K is strictly increasing from 1,∞ onto 2K r K′ r /π,πK r /K′ r . Theorem 1.2. Let t ∈ 0,∞ , r √ t/ 1 t , a 4/π K 1/√2 , b a/2,A r π2/ 2μ r , B r 8K r K′ r 2 E r − r ′K r /π2, and Fc K K logηK t − log t / K − 1 − c . Then, the following statements are true. 1 Fc K is strictly decreasing from 1,∞ onto −∞, 4K r K′ r /π − c for c > A r . If c A r , then Fc K is strictly decreasing from 1,∞ onto A r − 4 log 2 − log t, 4K r K′ r /π −A r . Moreover, te K−1 A r A r −4 log 2−log t /K < ηK t < te K−1 A r 4K r K ′ r /π−A r /K 1.10 for all t ∈ 0,∞ and K ∈ 1,∞ . In particular, if t 1, then 1.10 becomes e K−1 π π−4 log 2 /K < λ K < e K−1 π a−π /K . 1.11 2 If c ≤ B r , then Fc K is strictly increasing from 1,∞ onto 4K r K′ r /π − c,∞ . Moreover, ηK t > te K−1 B r 4K r K ′ r /π−B r /K 1.12 for all t ∈ 0,∞ and K ∈ 1,∞ . In particular, if t 1, then 1.12 becomes λ K > e K−1 b b/K e K− 1/K . 1.13 3 If B r < c < A r , then there existsK1 ∈ 1,∞ such that Fc K is strictly decreasing on 1, K1 and strictly increasing on K1,∞ . 4 Fc K is convex in 1,∞ . 2. Lemmas In order to prove our main results, we need several formulas and lemmas, which we present in this section. 4 Abstract and Applied Analysis The following formulas were presented in 14, Appendix E, pp. 474-475 . Let t ∈ 0,∞ , K ∈ 0,∞ , r √ t/ 1 t ∈ 0, 1 , and s φK r . Then, dK r dr E r − r ′K r rr ′2 , dE r dr E r −K r r , K r E′ r K′ r E r −K r K′ r π 2 , dμ r dr − π 2 4rr ′2K r 2 , ∂s ∂r ss′K s K′ s rr ′2K r K′ r , ∂s ∂K 2 πK ss′K s K′ s , φK r 2 φ1/K ( r ′ )2 1, ηK t ( s s′ )2 , ∂ηK t ∂K 4 πK ηK t K s K′ s 2 μ r K′ s ηK t . 2.1 Lemma 2.1 see 14, Theorem 1.25 . For −∞ < a < b < ∞, let f, g : a, b → R be continuous on a, b and differentiable on a, b , and let g ′ x / 0 on a, b . If f ′ x /g ′ x is increasing (decreasing) on a, b , then so are f x − f a g x − g a , f x − f b g x − g b . 2.2 If f ′ x /g ′ x is strictly monotone, then the monotonicity in the conclusion is also strict. The following lemma can be found in 14, Theorem 3.21 1 and 7 , Lemma 3.32 1 and Theorem 5.13 2 . Lemma 2.2. 1 E r − r ′K r /r2 is strictly increasing from 0, 1 onto π/4, 1 ; 2 r ′K r is strictly decreasing from 0, 1 onto 0, π/2 if and only if c ≥ 1/2; 3 K r K′ r is strictly decreasing in 0,√2/2 and strictly increasing in √2/2, 1 ; 4 μ r log r is strictly decreasing from 0, 1 onto 0, log 4 . Lemma 2.3. Let r ∈ 1/√2, 1 , K ∈ 1,∞ , and s φK r . Then, G K ≡ {π/ 2K s } μ r /K′ s 2 is strictly decreasing from 1,∞ onto K′ r /K r , π2/ 2K r 2 . Proof. Clearly G 1 π2/ 2K r 2 , G ∞ K′ r /K r . Differentiating G K , one has G′ K 4 πK μ r K s K′ s −2 [ E′ s − s2K′ s ] − π K K s −2K′ s [ E s − s′K s ] 4 πK K s −2K′ s G1 K , 2.3 where G1 K E′ s − s2K′ s K s μ r 2 − π2 E s − s′K s K′ s /4. Abstract and Applied Analysis 5 From Lemma 2.2 1 and 2 , we clearly see that G1 K is strictly decreasing in 1,∞ . Moreover,and Applied Analysis 5 From Lemma 2.2 1 and 2 , we clearly see that G1 K is strictly decreasing in 1,∞ . Moreover, lim K→ 1 G1 K [ E′ r − r2K′ r ] K r μ r 2 − π 2 4 [ E r − r ′K r ] K′ r 3 π2 4 K′ r G2 r , 2.4 whereG2 r K r E′ r −r2K′ r −K′ r E r −r ′K r is also strictly decreasing in 0, 1 . Thus, G2 r ≤ G2 √ 2/2 0 for r ∈ 1/√2, 1 , and G1 K < G1 1 ≤ 0 for K ∈ 1,∞ . Therefore, the monotonicity ofG K follows from 2.3 and 2.4 together with the fact that G1 K < 0 for K ∈ 1,∞ . 3. Proofs of Theorems 1.1 and 1.2 Proof of Theorem 1.1. For part 1 , clearly f 1 1. Let r μ−1 π/ 2K for K ∈ 1,∞ , then λ K r/r ′ , r ∈ 1/√2, 1 , dr dK 2 π rr ′K′ r , dλ K dK 4 π λ K K′ r , 3.1 lim K→ ∞ f K lim r→ 1 r2K′ r r ′2K r ∞. 3.2 Making use of 3.1 , we have K 1f ′ K λ K f1 K ≡ 4 π K′ r K r − c. 3.3 It follows from Lemma 2.2 3 that f1 K is strictly increasing from 1,∞ onto a − c,∞ . Then, from 3.2 and 3.3 , we know that f is strictly increasing from 1,∞ onto 1,∞ for c ≤ a. If c > a, then there existsK0 ∈ 1,∞ such that f is strictly decreasing in 1, K0 and strictly increasing in K0,∞ . Moreover, the inequality λ K ≥ K holds for all K ∈ 1,∞ with the best possible constant c a. For part 2 , denote r √ t/ 1 t . Differentiating g K , we get g ′ K 2K′ s 2 K − 1 /μ r − (logηK t − log t) K − 1 2 . 3.4 Let g1 K 2K′ s 2 K − 1 /μ r − logηK t − log t and g2 K K − 1 , then g1 1 g2 1 0, g ′ K g1 K /g2 K and g1 ′ K g2′ K g3 K ≡ − 2 μ r 2 [ E′ s − s2K′ s ] K′ s . 3.5 6 Abstract and Applied Analysis Clearly, g3 K is strictly increasing in 1,∞ . Then, 3.5 and Lemma 2.1 lead to the conclusion that g ′ K is strictly increasing in 1,∞ . Therefore, g K is convex in 1,∞ . For part 3 , if t ≥ 1, then r ≥ √2/2. Let h1 K logηK t − log t and h2 K K − 1/K, then h1 1 h2 1 0, h K h1 K /h2 K , and h1 ′ K h2 ′ K 2K′ s /μ r 1 K−2 2μ r G K , 3.6 where G K is defined as in Lemma 2.2. Therefore, h K is strictly increasing in 1,∞ for t ≥ 1 follows from Lemmas 2.1 and 2.2 together with 3.6 . Moreover, making use of l’Hôpital’s rule, we have h 1 2K r K′ r /π , h ∞ πK r /K′ r . Proof of Theorem 1.2. Differentiating Fc K gives F ′ c K logηK t − log t K − 1 − c K ⎡ ⎢⎣ ( 2K′ s 2 K − 1 ) /μ r − (logηK t − log t) K − 1 2 ⎤ ⎥⎦ 2K′ s K K − 1 /μ r − (logηK t − log t) K − 1 2 − c. 3.7

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Integral Operator and Argument Estimation of a Novel Subclass of Harmonic Univalent Functions

Abstract. In this paper we define and verify a subclass of harmonic univalent functions involving the argument of complex-value functions of the form f = h + ¯g and investigate some properties of this subclass e.g. necessary and sufficient coefficient bounds, extreme points, distortion bounds and Hadamard product.Abstract. In this paper we define and verify a subclass of harmonic univalent func...

متن کامل

On certain fractional calculus operators involving generalized Mittag-Leffler function

The object of this paper is to establish certain generalized fractional integration and differentiation involving generalized Mittag-Leffler function defined by Salim and Faraj [25]. The considered generalized fractional calculus operators contain the Appell's function $F_3$ [2, p.224] as kernel and are introduced by Saigo and Maeda [23]. The Marichev-Saigo-Maeda fractional calculus operators a...

متن کامل

Coefficient bounds for a new class of univalent functions involving Salagean operator and the modified Sigmoid function

We define a new subclass of univalent function based on Salagean differential operator and obtained the initial Taylor coefficients using the techniques of Briot-Bouquet differential subordination in association with the modified sigmoid function. Further we obtain the classical Fekete-Szego inequality results.

متن کامل

A Class of Multivalent Analytic Functions with Fixed Argument of Coefficients Involving Wright’s Generalized Hypergeometric Functions

In this paper, a class of analytic functions with fixed argument of its coefficients involving Wright’s generalized hypergeometric function is defined with the help of subordination. The coefficient inequalities have been derived. Growth, distortion bounds and extreme points for functions belonging to the defined class have been investigated with consequent results.

متن کامل

A note on the sum-rate-distortion function of some lossy source coding problems involving infinite-valued distortion functions

For a number of lossy source coding problems it is shown that even if the usual single-letter sum-rate-distortion expressions may become invalid for non-infinite distortion functions, they can be approached, to any desired accuracy, via the usual valid expressions for appropriately truncated finite versions of the distortion functions.

متن کامل

Functional modulation of a protein folding landscape via side-chain distortion.

Ultrahigh-resolution (< 1.0 Å) structures have revealed unprecedented and unexpected details of molecular geometry, such as the deformation of aromatic rings from planarity. However, the functional utility of such energetically costly strain is unknown. The 0.83 Å structure of α-lytic protease (αLP) indicated that residues surrounding a conserved Phe side-chain dictate a rotamer which results i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014